pandas
def parse(filename):
e = xml.etree.ElementTree.parse(filename).getroot()
total = {}
total["totalPresent"] = e.find("totalPresent").text
total["totalLibre"] = e.find("totalLibre").text
parcs = {}
# XPATH notation
# https://fr.wikipedia.org/wiki/XPath
for parc in e.findall("Quartier/Parc"):
nom = parc.find("libelleParc").text
try:
libre = int(parc.find("placesLibresParc").text)
except ValueError:
# certaines cases ont écrit obsolete...
libre = np.nan
parcs[nom] = libre
date = parser.parse(parc.find("placesLibresUpdate").text)
return date, total, parcs
import pandas as pd
d = {'col1': [1, 2, 3, 4, 5], 'col2': [6, 7, 8, 9, 10], 'col3':[11, 12, 13, 14, 15]}
df = pd.DataFrame(data=d)
df
col1 | col2 | col3 | |
---|---|---|---|
0 | 1 | 6 | 11 |
1 | 2 | 7 | 12 |
2 | 3 | 8 | 13 |
3 | 4 | 9 | 14 |
4 | 5 | 10 | 15 |
# opérations vectorielles / matricielles
#df * 3
df * [1, 2, 3]
col1 | col2 | col3 | |
---|---|---|---|
0 | 1 | 12 | 33 |
1 | 2 | 14 | 36 |
2 | 3 | 16 | 39 |
3 | 4 | 18 | 42 |
4 | 5 | 20 | 45 |
+------------+---------+--------+
| | A | B |
+------------+---------+---------
| 0 | 0.626386| 1.52325|----axis=1----->
+------------+---------+--------+
| |
| axis=0 |
↓ ↓
axis = 1
print("axis : ", axis)
print(df.sum(axis=axis))
axis : 1 0 18 1 21 2 24 3 27 4 30 dtype: int64
### sélection des colonnes
df.col1
type(df.col1)
df.col1.index
df.col1.values
# sélection des lignes
df.iloc[[0]]
col1 | col2 | col3 | |
---|---|---|---|
0 | 1 | 6 | 11 |
# création
date_range = pd.date_range('2011-01-01', '2011-02-01', freq='W')
valeurs = [i**2/5 for i in range(len(date_range))]
valeurs[3] = numpy.nan
time_serie = pd.Series(valeurs, index=date_range)
time_serie # 2011-01-09 0.2
# indexing
time_serie["2011-01-06":"2011-01-25"]
# reindexing / interpolation
time_serie = time_serie.resample('D').mean()
time_serie = time_serie.interpolate(how='linear')
time_serie # 2011-01-09 0.2
2011-01-02 0.000000 2011-01-03 0.028571 2011-01-04 0.057143 2011-01-05 0.085714 2011-01-06 0.114286 2011-01-07 0.142857 2011-01-08 0.171429 2011-01-09 0.200000 2011-01-10 0.285714 2011-01-11 0.371429 2011-01-12 0.457143 2011-01-13 0.542857 2011-01-14 0.628571 2011-01-15 0.714286 2011-01-16 0.800000 2011-01-17 0.971429 2011-01-18 1.142857 2011-01-19 1.314286 2011-01-20 1.485714 2011-01-21 1.657143 2011-01-22 1.828571 2011-01-23 2.000000 2011-01-24 2.171429 2011-01-25 2.342857 2011-01-26 2.514286 2011-01-27 2.685714 2011-01-28 2.857143 2011-01-29 3.028571 2011-01-30 3.200000 Freq: D, dtype: float64
# imports
import numpy
import pandas
import matplotlib.pyplot as plt
from read_data import get_dataframe, parse, _get_dataframe
# commande magique qui permet de manipuler les graphiques dans le notebook
%matplotlib notebook
?
pour avoir la documentation d'une fonction??
pour afficher le code d'une fonctionget_dataframe??
#_get_dataframe??
#parse??
Il y a un mécanisme de cache mis en place pour aller plus vite.
df_places_libres = get_dataframe()
df = df_places_libres
df
using ./data/mars.feather stored dataframe
ABBAYE | ANNONCIADE | ATHENA | BOSIO | C.C.F. | CASINO | CHPG 1 (HAUT) | CHPG 2 (BAS) | CONDAMINE | COSTA | ... | REGULATION BUS | ROQUEVILLE | SQUARE GASTAUD | ST ANTOINE | ST CHARLES | ST LAURENT | ST NICOLAS | STADE | TESTIMONIO | VISITATION | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2018-12-31 23:58:45.513715 | 11.0 | 61.0 | 0.0 | 0.0 | 163.0 | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | ... | 1.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 68.0 | 139.0 | 0.0 | 20.0 |
2019-01-01 00:03:53.162553 | 11.0 | 61.0 | 0.0 | 0.0 | 161.0 | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | ... | 3.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 68.0 | 139.0 | 0.0 | 20.0 |
2019-01-01 00:08:55.503312 | 11.0 | 61.0 | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | ... | 3.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 69.0 | 137.0 | 0.0 | 20.0 |
2019-01-01 00:13:20.806756 | 11.0 | 61.0 | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | ... | 3.0 | 16.0 | 0.0 | 36.0 | 0.0 | 0.0 | 69.0 | 138.0 | 0.0 | 20.0 |
2019-01-01 00:18:25.333208 | 11.0 | 62.0 | 0.0 | 0.0 | 158.0 | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | ... | 3.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 69.0 | 138.0 | 0.0 | 20.0 |
2019-01-01 00:23:23.809532 | 11.0 | 62.0 | 0.0 | 0.0 | 152.0 | 29.0 | 0.0 | 223.0 | 3.0 | 0.0 | ... | 3.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 69.0 | 137.0 | 0.0 | 20.0 |
2019-01-01 00:28:27.377364 | 11.0 | 62.0 | 0.0 | 0.0 | 161.0 | 40.0 | 0.0 | 224.0 | 15.0 | 4.0 | ... | 3.0 | 17.0 | 2.0 | 36.0 | 6.0 | 0.0 | 68.0 | 136.0 | 0.0 | 20.0 |
2019-01-01 00:33:22.104059 | 11.0 | 64.0 | 0.0 | 0.0 | 176.0 | 46.0 | 0.0 | 224.0 | 19.0 | 6.0 | ... | 3.0 | 17.0 | 9.0 | 36.0 | 8.0 | 5.0 | 68.0 | 136.0 | 0.0 | 20.0 |
2019-01-01 00:38:29.046510 | 10.0 | 64.0 | 0.0 | 2.0 | 185.0 | 73.0 | 0.0 | 224.0 | 34.0 | 5.0 | ... | 3.0 | 17.0 | 10.0 | 36.0 | 14.0 | 8.0 | 68.0 | 136.0 | 0.0 | 20.0 |
2019-01-01 00:43:29.351093 | 10.0 | 65.0 | 0.0 | 4.0 | 200.0 | 79.0 | 0.0 | 224.0 | 41.0 | 7.0 | ... | 3.0 | 16.0 | 14.0 | 37.0 | 22.0 | 12.0 | 68.0 | 140.0 | 0.0 | 20.0 |
2019-01-01 00:48:36.611024 | 10.0 | 65.0 | 0.0 | 4.0 | 217.0 | 80.0 | 0.0 | 228.0 | 46.0 | 8.0 | ... | 3.0 | 16.0 | 14.0 | 37.0 | 29.0 | 16.0 | 68.0 | 142.0 | 0.0 | 20.0 |
2019-01-01 00:53:36.516809 | 9.0 | 66.0 | 0.0 | 6.0 | 241.0 | 81.0 | 0.0 | 230.0 | 55.0 | 5.0 | ... | 3.0 | 16.0 | 19.0 | 37.0 | 40.0 | 19.0 | 69.0 | 148.0 | 0.0 | 20.0 |
2019-01-01 00:58:38.622161 | 9.0 | 66.0 | 0.0 | 7.0 | 252.0 | 92.0 | 0.0 | 230.0 | 62.0 | 9.0 | ... | 3.0 | 18.0 | 15.0 | 37.0 | 52.0 | 22.0 | 69.0 | 152.0 | 0.0 | 20.0 |
2019-01-01 01:03:39.326647 | 9.0 | 67.0 | 0.0 | 7.0 | 269.0 | 93.0 | 0.0 | 230.0 | 74.0 | 11.0 | ... | 3.0 | 18.0 | 17.0 | 38.0 | 62.0 | 25.0 | 69.0 | 155.0 | 0.0 | 20.0 |
2019-01-01 01:08:57.683416 | 9.0 | 68.0 | 0.0 | 7.0 | 280.0 | 111.0 | 0.0 | 230.0 | 78.0 | 11.0 | ... | 3.0 | 19.0 | 12.0 | 39.0 | 66.0 | 26.0 | 69.0 | 157.0 | 0.0 | 20.0 |
2019-01-01 01:14:00.256048 | 7.0 | 70.0 | 0.0 | 11.0 | 289.0 | 116.0 | 0.0 | 231.0 | 86.0 | 13.0 | ... | 3.0 | 21.0 | 12.0 | 39.0 | 71.0 | 31.0 | 69.0 | 158.0 | 0.0 | 20.0 |
2019-01-01 01:18:09.696105 | 6.0 | 70.0 | 0.0 | 11.0 | 298.0 | 112.0 | 0.0 | 230.0 | 87.0 | 13.0 | ... | 3.0 | 23.0 | 14.0 | 39.0 | 75.0 | 31.0 | 70.0 | 159.0 | 0.0 | 20.0 |
2019-01-01 01:23:13.187660 | 6.0 | 72.0 | 0.0 | 11.0 | 308.0 | 113.0 | 0.0 | 230.0 | 91.0 | 13.0 | ... | 3.0 | 25.0 | 16.0 | 40.0 | 84.0 | 30.0 | 70.0 | 163.0 | 0.0 | 20.0 |
2019-01-01 01:28:12.490395 | 6.0 | 72.0 | 0.0 | 12.0 | 316.0 | 127.0 | 0.0 | 230.0 | 97.0 | 16.0 | ... | 3.0 | 28.0 | 20.0 | 41.0 | 93.0 | 29.0 | 70.0 | 167.0 | 0.0 | 20.0 |
2019-01-01 01:33:15.772777 | 6.0 | 73.0 | 0.0 | 14.0 | 334.0 | 131.0 | 0.0 | 230.0 | 107.0 | 17.0 | ... | 3.0 | 29.0 | 24.0 | 41.0 | 103.0 | 28.0 | 71.0 | 168.0 | 7.0 | 20.0 |
2019-01-01 01:38:10.126652 | 6.0 | 74.0 | 0.0 | 16.0 | 338.0 | 139.0 | 0.0 | 229.0 | 114.0 | 19.0 | ... | 3.0 | 31.0 | 26.0 | 42.0 | 109.0 | 28.0 | 71.0 | 172.0 | 7.0 | 20.0 |
2019-01-01 01:43:15.472919 | 6.0 | 77.0 | 0.0 | 18.0 | 352.0 | 146.0 | 0.0 | 233.0 | 120.0 | 20.0 | ... | 3.0 | 33.0 | 26.0 | 42.0 | 114.0 | 31.0 | 71.0 | 175.0 | 8.0 | 20.0 |
2019-01-01 01:48:16.924851 | 5.0 | 77.0 | 0.0 | 18.0 | 360.0 | 146.0 | 0.0 | 233.0 | 127.0 | 22.0 | ... | 3.0 | 33.0 | 27.0 | 42.0 | 120.0 | 34.0 | 71.0 | 182.0 | 8.0 | 20.0 |
2019-01-01 01:53:17.641957 | 5.0 | 77.0 | 0.0 | 20.0 | 369.0 | 146.0 | 0.0 | 233.0 | 131.0 | 25.0 | ... | 3.0 | 33.0 | 32.0 | 42.0 | 125.0 | 35.0 | 71.0 | 183.0 | 8.0 | 20.0 |
2019-01-01 01:58:43.727033 | 5.0 | 78.0 | 0.0 | 21.0 | 374.0 | 148.0 | 0.0 | 236.0 | 135.0 | 25.0 | ... | 3.0 | 35.0 | 37.0 | 42.0 | 130.0 | 34.0 | 72.0 | 184.0 | 8.0 | 20.0 |
2019-01-01 02:03:43.208523 | 5.0 | 79.0 | 0.0 | 23.0 | 383.0 | 156.0 | 0.0 | 235.0 | 140.0 | 26.0 | ... | 3.0 | 36.0 | 40.0 | 42.0 | 136.0 | 35.0 | 72.0 | 188.0 | 8.0 | 20.0 |
2019-01-01 02:08:52.602849 | 5.0 | 79.0 | 0.0 | 1.0 | 397.0 | 152.0 | 0.0 | 235.0 | 143.0 | 25.0 | ... | 3.0 | 37.0 | 46.0 | 42.0 | 139.0 | 36.0 | 72.0 | 190.0 | 8.0 | 20.0 |
2019-01-01 02:12:57.921321 | 5.0 | 79.0 | 0.0 | 1.0 | 406.0 | 157.0 | 0.0 | 235.0 | 148.0 | 25.0 | ... | 3.0 | 37.0 | 47.0 | 42.0 | 144.0 | 35.0 | 72.0 | 192.0 | 8.0 | 20.0 |
2019-01-01 02:17:57.898175 | 5.0 | 79.0 | 0.0 | 1.0 | 418.0 | 153.0 | 0.0 | 235.0 | 157.0 | 29.0 | ... | 3.0 | 37.0 | 56.0 | 42.0 | 144.0 | 35.0 | 72.0 | 193.0 | 8.0 | 20.0 |
2019-01-01 02:22:53.474961 | 5.0 | 79.0 | 0.0 | 1.0 | 421.0 | 156.0 | 0.0 | 234.0 | 162.0 | 29.0 | ... | 3.0 | 38.0 | 58.0 | 42.0 | 146.0 | 42.0 | 72.0 | 196.0 | 6.0 | 20.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2019-01-31 21:27:46.206819 | 10.0 | 22.0 | 0.0 | 0.0 | 524.0 | 18.0 | 0.0 | 235.0 | 53.0 | 29.0 | ... | 0.0 | 55.0 | 32.0 | 69.0 | 124.0 | 26.0 | 27.0 | 288.0 | 9.0 | 12.0 |
2019-01-31 21:33:50.135226 | 11.0 | 22.0 | 0.0 | 0.0 | 528.0 | 15.0 | 0.0 | 235.0 | 54.0 | 29.0 | ... | 0.0 | 55.0 | 34.0 | 69.0 | 124.0 | 26.0 | 27.0 | 290.0 | 9.0 | 12.0 |
2019-01-31 21:38:47.066052 | 11.0 | 22.0 | 0.0 | 0.0 | 531.0 | 8.0 | 0.0 | 235.0 | 56.0 | 29.0 | ... | 0.0 | 55.0 | 37.0 | 69.0 | 124.0 | 27.0 | 27.0 | 293.0 | 11.0 | 12.0 |
2019-01-31 21:43:51.447938 | 12.0 | 22.0 | 0.0 | 0.0 | 532.0 | 12.0 | 0.0 | 237.0 | 57.0 | 29.0 | ... | 0.0 | 56.0 | 39.0 | 69.0 | 124.0 | 27.0 | 27.0 | 294.0 | 11.0 | 12.0 |
2019-01-31 21:48:57.912843 | 12.0 | 6.0 | 0.0 | 0.0 | 533.0 | 17.0 | 0.0 | 237.0 | 57.0 | 29.0 | ... | 0.0 | 55.0 | 42.0 | 69.0 | 126.0 | 26.0 | 27.0 | 295.0 | 12.0 | 12.0 |
2019-01-31 21:53:10.028467 | 12.0 | 5.0 | 0.0 | 0.0 | 532.0 | 17.0 | 0.0 | 238.0 | 58.0 | 29.0 | ... | 0.0 | 55.0 | 41.0 | 69.0 | 126.0 | 26.0 | 27.0 | 296.0 | 12.0 | 12.0 |
2019-01-31 21:58:11.571964 | 12.0 | 5.0 | 0.0 | 0.0 | 534.0 | 18.0 | 0.0 | 238.0 | 59.0 | 29.0 | ... | 0.0 | 53.0 | 42.0 | 69.0 | 127.0 | 27.0 | 27.0 | 297.0 | 12.0 | 12.0 |
2019-01-31 22:03:13.412295 | 12.0 | 7.0 | 0.0 | 0.0 | 536.0 | 19.0 | 0.0 | 243.0 | 60.0 | 28.0 | ... | 0.0 | 53.0 | 43.0 | 69.0 | 127.0 | 27.0 | 27.0 | 303.0 | 11.0 | 12.0 |
2019-01-31 22:08:15.514640 | 12.0 | 7.0 | 0.0 | 0.0 | 535.0 | 20.0 | 0.0 | 244.0 | 61.0 | 28.0 | ... | 0.0 | 53.0 | 43.0 | 70.0 | 127.0 | 27.0 | 27.0 | 304.0 | 11.0 | 12.0 |
2019-01-31 22:13:20.492405 | 12.0 | 7.0 | 0.0 | 0.0 | 539.0 | 23.0 | 0.0 | 245.0 | 62.0 | 28.0 | ... | 0.0 | 54.0 | 44.0 | 70.0 | 127.0 | 27.0 | 27.0 | 304.0 | 11.0 | 12.0 |
2019-01-31 22:18:23.078005 | 13.0 | 7.0 | 0.0 | 0.0 | 538.0 | 27.0 | 0.0 | 245.0 | 64.0 | 29.0 | ... | 0.0 | 54.0 | 46.0 | 72.0 | 127.0 | 28.0 | 27.0 | 305.0 | 11.0 | 12.0 |
2019-01-31 22:23:26.651440 | 13.0 | 7.0 | 0.0 | 0.0 | 539.0 | 28.0 | 0.0 | 246.0 | 64.0 | 29.0 | ... | 0.0 | 54.0 | 47.0 | 72.0 | 128.0 | 28.0 | 27.0 | 310.0 | 11.0 | 12.0 |
2019-01-31 22:28:26.148944 | 11.0 | 7.0 | 0.0 | 0.0 | 539.0 | 30.0 | 0.0 | 247.0 | 65.0 | 30.0 | ... | 0.0 | 55.0 | 49.0 | 72.0 | 127.0 | 31.0 | 27.0 | 311.0 | 18.0 | 12.0 |
2019-01-31 22:33:33.933291 | 11.0 | 7.0 | 0.0 | 0.0 | 540.0 | 30.0 | 0.0 | 249.0 | 39.0 | 30.0 | ... | 0.0 | 55.0 | 54.0 | 72.0 | 130.0 | 31.0 | 27.0 | 311.0 | 18.0 | 12.0 |
2019-01-31 22:38:37.469309 | 11.0 | 7.0 | 0.0 | 0.0 | 539.0 | 32.0 | 0.0 | 248.0 | 43.0 | 30.0 | ... | 0.0 | 55.0 | 56.0 | 72.0 | 131.0 | 30.0 | 27.0 | 314.0 | 17.0 | 12.0 |
2019-01-31 22:43:51.681951 | 11.0 | 7.0 | 0.0 | 0.0 | 538.0 | 31.0 | 0.0 | 248.0 | 43.0 | 30.0 | ... | 0.0 | 55.0 | 58.0 | 72.0 | 131.0 | 30.0 | 27.0 | 317.0 | 17.0 | 12.0 |
2019-01-31 22:47:47.382396 | 11.0 | 7.0 | 0.0 | 0.0 | 539.0 | 35.0 | 0.0 | 248.0 | 45.0 | 30.0 | ... | 0.0 | 55.0 | 61.0 | 71.0 | 131.0 | 31.0 | 27.0 | 319.0 | 17.0 | 12.0 |
2019-01-31 22:52:48.298390 | 11.0 | 7.0 | 0.0 | 0.0 | 540.0 | 36.0 | 0.0 | 249.0 | 47.0 | 30.0 | ... | 0.0 | 55.0 | 60.0 | 71.0 | 133.0 | 31.0 | 27.0 | 320.0 | 19.0 | 12.0 |
2019-01-31 22:57:51.937293 | 11.0 | 8.0 | 0.0 | 0.0 | 540.0 | 41.0 | 0.0 | 249.0 | 48.0 | 30.0 | ... | 0.0 | 55.0 | 63.0 | 71.0 | 133.0 | 31.0 | 27.0 | 321.0 | 19.0 | 12.0 |
2019-01-31 23:03:01.586139 | 11.0 | 8.0 | 0.0 | 0.0 | 541.0 | 70.0 | 0.0 | 250.0 | 48.0 | 30.0 | ... | 0.0 | 55.0 | 64.0 | 71.0 | 133.0 | 32.0 | 27.0 | 321.0 | 19.0 | 12.0 |
2019-01-31 23:08:00.045280 | 11.0 | 8.0 | 0.0 | 0.0 | 540.0 | 99.0 | 0.0 | 250.0 | 48.0 | 30.0 | ... | 0.0 | 56.0 | 64.0 | 71.0 | 133.0 | 34.0 | 27.0 | 322.0 | 22.0 | 12.0 |
2019-01-31 23:13:05.809609 | 11.0 | 9.0 | 0.0 | 0.0 | 541.0 | 112.0 | 0.0 | 251.0 | 48.0 | 31.0 | ... | 0.0 | 56.0 | 70.0 | 71.0 | 135.0 | 34.0 | 27.0 | 322.0 | 22.0 | 12.0 |
2019-01-31 23:18:08.733336 | 11.0 | 9.0 | 0.0 | 0.0 | 541.0 | 123.0 | 0.0 | 252.0 | 49.0 | 32.0 | ... | 0.0 | 56.0 | 71.0 | 71.0 | 138.0 | 35.0 | 27.0 | 322.0 | 23.0 | 12.0 |
2019-01-31 23:23:10.170335 | 11.0 | 10.0 | 0.0 | 0.0 | 540.0 | 138.0 | 0.0 | 252.0 | 49.0 | 32.0 | ... | 0.0 | 56.0 | 72.0 | 71.0 | 138.0 | 35.0 | 27.0 | 323.0 | 23.0 | 12.0 |
2019-01-31 23:28:23.002361 | 11.0 | 10.0 | 0.0 | 0.0 | 540.0 | 153.0 | 0.0 | 252.0 | 49.0 | 32.0 | ... | 0.0 | 58.0 | 72.0 | 71.0 | 140.0 | 36.0 | 27.0 | 323.0 | 22.0 | 12.0 |
2019-01-31 23:33:34.376227 | 11.0 | 10.0 | 0.0 | 0.0 | 541.0 | 157.0 | 0.0 | 251.0 | 49.0 | 32.0 | ... | 0.0 | 59.0 | 72.0 | 71.0 | 140.0 | 36.0 | 27.0 | 323.0 | 22.0 | 13.0 |
2019-01-31 23:38:44.117248 | 11.0 | 10.0 | 0.0 | 0.0 | 542.0 | 161.0 | 0.0 | 252.0 | 50.0 | 32.0 | ... | 0.0 | 59.0 | 72.0 | 71.0 | 140.0 | 36.0 | 27.0 | 322.0 | 23.0 | 13.0 |
2019-01-31 23:43:44.644075 | 11.0 | 10.0 | 0.0 | 0.0 | 541.0 | 162.0 | 0.0 | 252.0 | 51.0 | 32.0 | ... | 0.0 | 60.0 | 72.0 | 70.0 | 140.0 | 37.0 | 27.0 | 322.0 | 24.0 | 13.0 |
2019-01-31 23:48:59.779344 | 11.0 | 10.0 | 0.0 | 0.0 | 542.0 | 167.0 | 0.0 | 252.0 | 51.0 | 32.0 | ... | 0.0 | 60.0 | 72.0 | 70.0 | 141.0 | 37.0 | 27.0 | 322.0 | 24.0 | 13.0 |
2019-01-31 23:54:01.214992 | 11.0 | 10.0 | 0.0 | 0.0 | 543.0 | 172.0 | 0.0 | 252.0 | 51.0 | 32.0 | ... | 0.0 | 60.0 | 72.0 | 70.0 | 141.0 | 37.0 | 27.0 | 314.0 | 24.0 | 13.0 |
8928 rows × 44 columns
df.describe()
ABBAYE | ANNONCIADE | ATHENA | BOSIO | C.C.F. | CASINO | CHPG 1 (HAUT) | CHPG 2 (BAS) | CONDAMINE | COSTA | ... | REGULATION BUS | ROQUEVILLE | SQUARE GASTAUD | ST ANTOINE | ST CHARLES | ST LAURENT | ST NICOLAS | STADE | TESTIMONIO | VISITATION | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 8865.000000 | 8854.000000 | 8865.000000 | 8864.000000 | 8861.000000 | 8847.000000 | 8865.0 | 8865.000000 | 8861.000000 | 8862.000000 | ... | 8865.000000 | 8836.000000 | 8861.000000 | 8831.000000 | 8864.000000 | 8827.000000 | 8860.000000 | 8861.000000 | 8863.000000 | 8865.000000 |
mean | 9.476368 | 38.172351 | 0.000226 | 6.910537 | 398.136215 | 199.657963 | 0.0 | 174.313480 | 86.913441 | 25.438389 | ... | 2.430795 | 53.476799 | 61.035662 | 99.672064 | 108.812613 | 34.140365 | 31.952822 | 322.871121 | 18.715446 | 16.493739 |
std | 4.138936 | 33.725513 | 0.015019 | 10.748654 | 178.069002 | 130.961641 | 0.0 | 77.492839 | 57.309808 | 19.855032 | ... | 0.913435 | 37.488724 | 41.110327 | 97.942175 | 59.597936 | 24.016058 | 24.324109 | 317.795280 | 12.390793 | 3.231478 |
min | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | ... | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 7.000000 | 9.000000 | 0.000000 | 0.000000 | 206.000000 | 70.000000 | 0.0 | 119.000000 | 48.000000 | 6.000000 | ... | 2.000000 | 29.000000 | 20.000000 | 28.000000 | 57.000000 | 6.000000 | 18.000000 | 85.000000 | 6.000000 | 15.000000 |
50% | 9.000000 | 17.000000 | 0.000000 | 2.000000 | 513.000000 | 229.000000 | 0.0 | 204.000000 | 66.000000 | 24.000000 | ... | 3.000000 | 62.000000 | 71.000000 | 54.000000 | 138.000000 | 40.000000 | 23.000000 | 225.000000 | 21.000000 | 17.000000 |
75% | 12.000000 | 80.000000 | 0.000000 | 10.000000 | 550.000000 | 308.000000 | 0.0 | 241.000000 | 142.000000 | 40.000000 | ... | 3.000000 | 73.000000 | 90.000000 | 248.000000 | 151.000000 | 54.000000 | 39.000000 | 461.000000 | 30.000000 | 19.000000 |
max | 29.000000 | 87.000000 | 1.000000 | 54.000000 | 559.000000 | 456.000000 | 0.0 | 267.000000 | 199.000000 | 85.000000 | ... | 3.000000 | 903.000000 | 136.000000 | 273.000000 | 210.000000 | 88.000000 | 89.000000 | 930.000000 | 40.000000 | 20.000000 |
8 rows × 44 columns
df.plot(legend=False)
<matplotlib.axes._subplots.AxesSubplot at 0x7fda13056a58>
trop_petits = set(df.columns[df.max() < 40])
bus = set(df.columns[["BUS" in nom for nom in df.columns]])
a_enlever = bus.union(trop_petits)
print("a enlever", a_enlever)
df = df.drop(a_enlever, 1)
df
a enlever {'PLATI', 'VISITATION', 'LES CARMES', 'PECHEURS BUS', 'ABBAYE', 'ECOLES', 'REGULATION BUS', 'DES OLIVIERS', 'GRIMALDI FORUM BUS', 'LES AGAVES', 'ATHENA', 'CHPG 1 (HAUT)'}
ANNONCIADE | BOSIO | C.C.F. | CASINO | CHPG 2 (BAS) | CONDAMINE | COSTA | ECOLES RDC | ENGELIN | GARE | ... | PORT | QUAI ANTOINE 1ER | ROQUEVILLE | SQUARE GASTAUD | ST ANTOINE | ST CHARLES | ST LAURENT | ST NICOLAS | STADE | TESTIMONIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2018-12-31 23:58:45.513715 | 61.0 | 0.0 | 163.0 | 0.0 | 225.0 | 0.0 | 0.0 | 32.0 | 58.0 | 0.0 | ... | 7.0 | 0.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 68.0 | 139.0 | 0.0 |
2019-01-01 00:03:53.162553 | 61.0 | 0.0 | 161.0 | 0.0 | 225.0 | 0.0 | 0.0 | 31.0 | 58.0 | 0.0 | ... | 7.0 | 0.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 68.0 | 139.0 | 0.0 |
2019-01-01 00:08:55.503312 | 61.0 | 0.0 | 160.0 | 0.0 | 225.0 | 0.0 | 0.0 | 31.0 | 58.0 | 1.0 | ... | 6.0 | 0.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 69.0 | 137.0 | 0.0 |
2019-01-01 00:13:20.806756 | 61.0 | 0.0 | 160.0 | 0.0 | 225.0 | 0.0 | 0.0 | 31.0 | 58.0 | 1.0 | ... | 6.0 | 0.0 | 16.0 | 0.0 | 36.0 | 0.0 | 0.0 | 69.0 | 138.0 | 0.0 |
2019-01-01 00:18:25.333208 | 62.0 | 0.0 | 158.0 | 0.0 | 225.0 | 0.0 | 0.0 | 31.0 | 60.0 | 1.0 | ... | 7.0 | 0.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 69.0 | 138.0 | 0.0 |
2019-01-01 00:23:23.809532 | 62.0 | 0.0 | 152.0 | 29.0 | 223.0 | 3.0 | 0.0 | 31.0 | 60.0 | 2.0 | ... | 10.0 | 7.0 | 16.0 | 0.0 | 36.0 | 1.0 | 0.0 | 69.0 | 137.0 | 0.0 |
2019-01-01 00:28:27.377364 | 62.0 | 0.0 | 161.0 | 40.0 | 224.0 | 15.0 | 4.0 | 31.0 | 60.0 | 2.0 | ... | 12.0 | 17.0 | 17.0 | 2.0 | 36.0 | 6.0 | 0.0 | 68.0 | 136.0 | 0.0 |
2019-01-01 00:33:22.104059 | 64.0 | 0.0 | 176.0 | 46.0 | 224.0 | 19.0 | 6.0 | 31.0 | 60.0 | 9.0 | ... | 14.0 | 19.0 | 17.0 | 9.0 | 36.0 | 8.0 | 5.0 | 68.0 | 136.0 | 0.0 |
2019-01-01 00:38:29.046510 | 64.0 | 2.0 | 185.0 | 73.0 | 224.0 | 34.0 | 5.0 | 30.0 | 59.0 | 13.0 | ... | 16.0 | 28.0 | 17.0 | 10.0 | 36.0 | 14.0 | 8.0 | 68.0 | 136.0 | 0.0 |
2019-01-01 00:43:29.351093 | 65.0 | 4.0 | 200.0 | 79.0 | 224.0 | 41.0 | 7.0 | 29.0 | 61.0 | 23.0 | ... | 21.0 | 31.0 | 16.0 | 14.0 | 37.0 | 22.0 | 12.0 | 68.0 | 140.0 | 0.0 |
2019-01-01 00:48:36.611024 | 65.0 | 4.0 | 217.0 | 80.0 | 228.0 | 46.0 | 8.0 | 30.0 | 62.0 | 36.0 | ... | 23.0 | 40.0 | 16.0 | 14.0 | 37.0 | 29.0 | 16.0 | 68.0 | 142.0 | 0.0 |
2019-01-01 00:53:36.516809 | 66.0 | 6.0 | 241.0 | 81.0 | 230.0 | 55.0 | 5.0 | 31.0 | 63.0 | 46.0 | ... | 28.0 | 43.0 | 16.0 | 19.0 | 37.0 | 40.0 | 19.0 | 69.0 | 148.0 | 0.0 |
2019-01-01 00:58:38.622161 | 66.0 | 7.0 | 252.0 | 92.0 | 230.0 | 62.0 | 9.0 | 33.0 | 65.0 | 58.0 | ... | 30.0 | 49.0 | 18.0 | 15.0 | 37.0 | 52.0 | 22.0 | 69.0 | 152.0 | 0.0 |
2019-01-01 01:03:39.326647 | 67.0 | 7.0 | 269.0 | 93.0 | 230.0 | 74.0 | 11.0 | 33.0 | 67.0 | 65.0 | ... | 30.0 | 53.0 | 18.0 | 17.0 | 38.0 | 62.0 | 25.0 | 69.0 | 155.0 | 0.0 |
2019-01-01 01:08:57.683416 | 68.0 | 7.0 | 280.0 | 111.0 | 230.0 | 78.0 | 11.0 | 34.0 | 67.0 | 71.0 | ... | 31.0 | 57.0 | 19.0 | 12.0 | 39.0 | 66.0 | 26.0 | 69.0 | 157.0 | 0.0 |
2019-01-01 01:14:00.256048 | 70.0 | 11.0 | 289.0 | 116.0 | 231.0 | 86.0 | 13.0 | 34.0 | 69.0 | 81.0 | ... | 35.0 | 58.0 | 21.0 | 12.0 | 39.0 | 71.0 | 31.0 | 69.0 | 158.0 | 0.0 |
2019-01-01 01:18:09.696105 | 70.0 | 11.0 | 298.0 | 112.0 | 230.0 | 87.0 | 13.0 | 34.0 | 71.0 | 83.0 | ... | 37.0 | 60.0 | 23.0 | 14.0 | 39.0 | 75.0 | 31.0 | 70.0 | 159.0 | 0.0 |
2019-01-01 01:23:13.187660 | 72.0 | 11.0 | 308.0 | 113.0 | 230.0 | 91.0 | 13.0 | 35.0 | 71.0 | 92.0 | ... | 42.0 | 59.0 | 25.0 | 16.0 | 40.0 | 84.0 | 30.0 | 70.0 | 163.0 | 0.0 |
2019-01-01 01:28:12.490395 | 72.0 | 12.0 | 316.0 | 127.0 | 230.0 | 97.0 | 16.0 | 37.0 | 72.0 | 99.0 | ... | 44.0 | 67.0 | 28.0 | 20.0 | 41.0 | 93.0 | 29.0 | 70.0 | 167.0 | 0.0 |
2019-01-01 01:33:15.772777 | 73.0 | 14.0 | 334.0 | 131.0 | 230.0 | 107.0 | 17.0 | 36.0 | 73.0 | 104.0 | ... | 44.0 | 66.0 | 29.0 | 24.0 | 41.0 | 103.0 | 28.0 | 71.0 | 168.0 | 7.0 |
2019-01-01 01:38:10.126652 | 74.0 | 16.0 | 338.0 | 139.0 | 229.0 | 114.0 | 19.0 | 40.0 | 75.0 | 109.0 | ... | 51.0 | 70.0 | 31.0 | 26.0 | 42.0 | 109.0 | 28.0 | 71.0 | 172.0 | 7.0 |
2019-01-01 01:43:15.472919 | 77.0 | 18.0 | 352.0 | 146.0 | 233.0 | 120.0 | 20.0 | 43.0 | 77.0 | 115.0 | ... | 52.0 | 74.0 | 33.0 | 26.0 | 42.0 | 114.0 | 31.0 | 71.0 | 175.0 | 8.0 |
2019-01-01 01:48:16.924851 | 77.0 | 18.0 | 360.0 | 146.0 | 233.0 | 127.0 | 22.0 | 43.0 | 77.0 | 125.0 | ... | 52.0 | 72.0 | 33.0 | 27.0 | 42.0 | 120.0 | 34.0 | 71.0 | 182.0 | 8.0 |
2019-01-01 01:53:17.641957 | 77.0 | 20.0 | 369.0 | 146.0 | 233.0 | 131.0 | 25.0 | 43.0 | 77.0 | 132.0 | ... | 54.0 | 75.0 | 33.0 | 32.0 | 42.0 | 125.0 | 35.0 | 71.0 | 183.0 | 8.0 |
2019-01-01 01:58:43.727033 | 78.0 | 21.0 | 374.0 | 148.0 | 236.0 | 135.0 | 25.0 | 43.0 | 77.0 | 137.0 | ... | 54.0 | 79.0 | 35.0 | 37.0 | 42.0 | 130.0 | 34.0 | 72.0 | 184.0 | 8.0 |
2019-01-01 02:03:43.208523 | 79.0 | 23.0 | 383.0 | 156.0 | 235.0 | 140.0 | 26.0 | 43.0 | 78.0 | 138.0 | ... | 55.0 | 88.0 | 36.0 | 40.0 | 42.0 | 136.0 | 35.0 | 72.0 | 188.0 | 8.0 |
2019-01-01 02:08:52.602849 | 79.0 | 1.0 | 397.0 | 152.0 | 235.0 | 143.0 | 25.0 | 45.0 | 79.0 | 110.0 | ... | 55.0 | 95.0 | 37.0 | 46.0 | 42.0 | 139.0 | 36.0 | 72.0 | 190.0 | 8.0 |
2019-01-01 02:12:57.921321 | 79.0 | 1.0 | 406.0 | 157.0 | 235.0 | 148.0 | 25.0 | 45.0 | 83.0 | 113.0 | ... | 55.0 | 97.0 | 37.0 | 47.0 | 42.0 | 144.0 | 35.0 | 72.0 | 192.0 | 8.0 |
2019-01-01 02:17:57.898175 | 79.0 | 1.0 | 418.0 | 153.0 | 235.0 | 157.0 | 29.0 | 47.0 | 83.0 | 122.0 | ... | 56.0 | 102.0 | 37.0 | 56.0 | 42.0 | 144.0 | 35.0 | 72.0 | 193.0 | 8.0 |
2019-01-01 02:22:53.474961 | 79.0 | 1.0 | 421.0 | 156.0 | 234.0 | 162.0 | 29.0 | 47.0 | 83.0 | 127.0 | ... | 56.0 | 108.0 | 38.0 | 58.0 | 42.0 | 146.0 | 42.0 | 72.0 | 196.0 | 6.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2019-01-31 21:27:46.206819 | 22.0 | 0.0 | 524.0 | 18.0 | 235.0 | 53.0 | 29.0 | 41.0 | 89.0 | 63.0 | ... | 9.0 | 45.0 | 55.0 | 32.0 | 69.0 | 124.0 | 26.0 | 27.0 | 288.0 | 9.0 |
2019-01-31 21:33:50.135226 | 22.0 | 0.0 | 528.0 | 15.0 | 235.0 | 54.0 | 29.0 | 42.0 | 90.0 | 63.0 | ... | 11.0 | 52.0 | 55.0 | 34.0 | 69.0 | 124.0 | 26.0 | 27.0 | 290.0 | 9.0 |
2019-01-31 21:38:47.066052 | 22.0 | 0.0 | 531.0 | 8.0 | 235.0 | 56.0 | 29.0 | 42.0 | 90.0 | 63.0 | ... | 11.0 | 57.0 | 55.0 | 37.0 | 69.0 | 124.0 | 27.0 | 27.0 | 293.0 | 11.0 |
2019-01-31 21:43:51.447938 | 22.0 | 0.0 | 532.0 | 12.0 | 237.0 | 57.0 | 29.0 | 42.0 | 90.0 | 65.0 | ... | 12.0 | 59.0 | 56.0 | 39.0 | 69.0 | 124.0 | 27.0 | 27.0 | 294.0 | 11.0 |
2019-01-31 21:48:57.912843 | 6.0 | 0.0 | 533.0 | 17.0 | 237.0 | 57.0 | 29.0 | 42.0 | 90.0 | 66.0 | ... | 12.0 | 61.0 | 55.0 | 42.0 | 69.0 | 126.0 | 26.0 | 27.0 | 295.0 | 12.0 |
2019-01-31 21:53:10.028467 | 5.0 | 0.0 | 532.0 | 17.0 | 238.0 | 58.0 | 29.0 | 43.0 | 90.0 | 66.0 | ... | 13.0 | 63.0 | 55.0 | 41.0 | 69.0 | 126.0 | 26.0 | 27.0 | 296.0 | 12.0 |
2019-01-31 21:58:11.571964 | 5.0 | 0.0 | 534.0 | 18.0 | 238.0 | 59.0 | 29.0 | 43.0 | 90.0 | 65.0 | ... | 14.0 | 64.0 | 53.0 | 42.0 | 69.0 | 127.0 | 27.0 | 27.0 | 297.0 | 12.0 |
2019-01-31 22:03:13.412295 | 7.0 | 0.0 | 536.0 | 19.0 | 243.0 | 60.0 | 28.0 | 43.0 | 90.0 | 66.0 | ... | 14.0 | 64.0 | 53.0 | 43.0 | 69.0 | 127.0 | 27.0 | 27.0 | 303.0 | 11.0 |
2019-01-31 22:08:15.514640 | 7.0 | 0.0 | 535.0 | 20.0 | 244.0 | 61.0 | 28.0 | 43.0 | 90.0 | 66.0 | ... | 22.0 | 67.0 | 53.0 | 43.0 | 70.0 | 127.0 | 27.0 | 27.0 | 304.0 | 11.0 |
2019-01-31 22:13:20.492405 | 7.0 | 0.0 | 539.0 | 23.0 | 245.0 | 62.0 | 28.0 | 44.0 | 90.0 | 67.0 | ... | 23.0 | 70.0 | 54.0 | 44.0 | 70.0 | 127.0 | 27.0 | 27.0 | 304.0 | 11.0 |
2019-01-31 22:18:23.078005 | 7.0 | 0.0 | 538.0 | 27.0 | 245.0 | 64.0 | 29.0 | 44.0 | 90.0 | 65.0 | ... | 23.0 | 70.0 | 54.0 | 46.0 | 72.0 | 127.0 | 28.0 | 27.0 | 305.0 | 11.0 |
2019-01-31 22:23:26.651440 | 7.0 | 0.0 | 539.0 | 28.0 | 246.0 | 64.0 | 29.0 | 44.0 | 91.0 | 66.0 | ... | 24.0 | 71.0 | 54.0 | 47.0 | 72.0 | 128.0 | 28.0 | 27.0 | 310.0 | 11.0 |
2019-01-31 22:28:26.148944 | 7.0 | 0.0 | 539.0 | 30.0 | 247.0 | 65.0 | 30.0 | 44.0 | 90.0 | 65.0 | ... | 26.0 | 73.0 | 55.0 | 49.0 | 72.0 | 127.0 | 31.0 | 27.0 | 311.0 | 18.0 |
2019-01-31 22:33:33.933291 | 7.0 | 0.0 | 540.0 | 30.0 | 249.0 | 39.0 | 30.0 | 44.0 | 90.0 | 65.0 | ... | 28.0 | 81.0 | 55.0 | 54.0 | 72.0 | 130.0 | 31.0 | 27.0 | 311.0 | 18.0 |
2019-01-31 22:38:37.469309 | 7.0 | 0.0 | 539.0 | 32.0 | 248.0 | 43.0 | 30.0 | 44.0 | 91.0 | 65.0 | ... | 27.0 | 80.0 | 55.0 | 56.0 | 72.0 | 131.0 | 30.0 | 27.0 | 314.0 | 17.0 |
2019-01-31 22:43:51.681951 | 7.0 | 0.0 | 538.0 | 31.0 | 248.0 | 43.0 | 30.0 | 37.0 | 91.0 | 66.0 | ... | 27.0 | 85.0 | 55.0 | 58.0 | 72.0 | 131.0 | 30.0 | 27.0 | 317.0 | 17.0 |
2019-01-31 22:47:47.382396 | 7.0 | 0.0 | 539.0 | 35.0 | 248.0 | 45.0 | 30.0 | 37.0 | 91.0 | 66.0 | ... | 29.0 | 91.0 | 55.0 | 61.0 | 71.0 | 131.0 | 31.0 | 27.0 | 319.0 | 17.0 |
2019-01-31 22:52:48.298390 | 7.0 | 0.0 | 540.0 | 36.0 | 249.0 | 47.0 | 30.0 | 37.0 | 91.0 | 66.0 | ... | 31.0 | 93.0 | 55.0 | 60.0 | 71.0 | 133.0 | 31.0 | 27.0 | 320.0 | 19.0 |
2019-01-31 22:57:51.937293 | 8.0 | 0.0 | 540.0 | 41.0 | 249.0 | 48.0 | 30.0 | 37.0 | 90.0 | 66.0 | ... | 31.0 | 101.0 | 55.0 | 63.0 | 71.0 | 133.0 | 31.0 | 27.0 | 321.0 | 19.0 |
2019-01-31 23:03:01.586139 | 8.0 | 0.0 | 541.0 | 70.0 | 250.0 | 48.0 | 30.0 | 38.0 | 90.0 | 66.0 | ... | 31.0 | 103.0 | 55.0 | 64.0 | 71.0 | 133.0 | 32.0 | 27.0 | 321.0 | 19.0 |
2019-01-31 23:08:00.045280 | 8.0 | 0.0 | 540.0 | 99.0 | 250.0 | 48.0 | 30.0 | 41.0 | 89.0 | 67.0 | ... | 33.0 | 109.0 | 56.0 | 64.0 | 71.0 | 133.0 | 34.0 | 27.0 | 322.0 | 22.0 |
2019-01-31 23:13:05.809609 | 9.0 | 0.0 | 541.0 | 112.0 | 251.0 | 48.0 | 31.0 | 41.0 | 89.0 | 67.0 | ... | 34.0 | 113.0 | 56.0 | 70.0 | 71.0 | 135.0 | 34.0 | 27.0 | 322.0 | 22.0 |
2019-01-31 23:18:08.733336 | 9.0 | 0.0 | 541.0 | 123.0 | 252.0 | 49.0 | 32.0 | 41.0 | 89.0 | 67.0 | ... | 36.0 | 115.0 | 56.0 | 71.0 | 71.0 | 138.0 | 35.0 | 27.0 | 322.0 | 23.0 |
2019-01-31 23:23:10.170335 | 10.0 | 0.0 | 540.0 | 138.0 | 252.0 | 49.0 | 32.0 | 41.0 | 90.0 | 68.0 | ... | 38.0 | 120.0 | 56.0 | 72.0 | 71.0 | 138.0 | 35.0 | 27.0 | 323.0 | 23.0 |
2019-01-31 23:28:23.002361 | 10.0 | 0.0 | 540.0 | 153.0 | 252.0 | 49.0 | 32.0 | 41.0 | 90.0 | 68.0 | ... | 40.0 | 127.0 | 58.0 | 72.0 | 71.0 | 140.0 | 36.0 | 27.0 | 323.0 | 22.0 |
2019-01-31 23:33:34.376227 | 10.0 | 0.0 | 541.0 | 157.0 | 251.0 | 49.0 | 32.0 | 42.0 | 91.0 | 68.0 | ... | 40.0 | 134.0 | 59.0 | 72.0 | 71.0 | 140.0 | 36.0 | 27.0 | 323.0 | 22.0 |
2019-01-31 23:38:44.117248 | 10.0 | 0.0 | 542.0 | 161.0 | 252.0 | 50.0 | 32.0 | 42.0 | 91.0 | 68.0 | ... | 40.0 | 135.0 | 59.0 | 72.0 | 71.0 | 140.0 | 36.0 | 27.0 | 322.0 | 23.0 |
2019-01-31 23:43:44.644075 | 10.0 | 0.0 | 541.0 | 162.0 | 252.0 | 51.0 | 32.0 | 42.0 | 91.0 | 68.0 | ... | 40.0 | 141.0 | 60.0 | 72.0 | 70.0 | 140.0 | 37.0 | 27.0 | 322.0 | 24.0 |
2019-01-31 23:48:59.779344 | 10.0 | 0.0 | 542.0 | 167.0 | 252.0 | 51.0 | 32.0 | 42.0 | 91.0 | 68.0 | ... | 40.0 | 146.0 | 60.0 | 72.0 | 70.0 | 141.0 | 37.0 | 27.0 | 322.0 | 24.0 |
2019-01-31 23:54:01.214992 | 10.0 | 0.0 | 543.0 | 172.0 | 252.0 | 51.0 | 32.0 | 42.0 | 91.0 | 68.0 | ... | 40.0 | 148.0 | 60.0 | 72.0 | 70.0 | 141.0 | 37.0 | 27.0 | 314.0 | 24.0 |
8928 rows × 32 columns
nb_nan = df.isna().sum().sum()
print("Nombre de valeurs manquantes :", nb_nan)
Nombre de valeurs manquantes : 2243
# analyse par ligne et colonnes
df.isnull().sum(axis=0).sort_values()
LARVOTTO 63 QUAI ANTOINE 1ER 63 CHPG 2 (BAS) 63 PECHEURS 63 LOUIS II 63 ENGELIN 63 LA DIGUE 63 JARDIN EXOTIQUE 63 BOSIO 64 ST CHARLES 64 GARE 64 OSTENDE 65 TESTIMONIO 65 COSTA 66 STADE 67 C.C.F. 67 PAPALINS 67 CONDAMINE 67 SQUARE GASTAUD 67 ST NICOLAS 68 PLACE D ARMES 68 ECOLES RDC 69 HELIPORT 69 PORT 73 ANNONCIADE 74 MOULINS 74 GRIMALDI FORUM 74 LA COLLE 76 CASINO 81 ROQUEVILLE 92 ST ANTOINE 97 ST LAURENT 101 dtype: int64
t = df.isnull().sum(axis=1)
plt.figure()
t.plot()
plt.show()
df = df.resample('H').mean()
df = df.interpolate(how='linear')
df
ANNONCIADE | BOSIO | C.C.F. | CASINO | CHPG 2 (BAS) | CONDAMINE | COSTA | ECOLES RDC | ENGELIN | GARE | ... | PORT | QUAI ANTOINE 1ER | ROQUEVILLE | SQUARE GASTAUD | ST ANTOINE | ST CHARLES | ST LAURENT | ST NICOLAS | STADE | TESTIMONIO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||||||||||
2018-12-31 23:00:00 | 61.000000 | 0.000000 | 163.000000 | 0.000000 | 225.000000 | 0.000000 | 0.000000 | 32.000000 | 58.000000 | 0.000000 | ... | 7.000000 | 0.000000 | 16.000000 | 0.000000 | 36.000000 | 1.000000 | 0.000000 | 68.000000 | 139.000000 | 0.000000 |
2019-01-01 00:00:00 | 63.250000 | 1.916667 | 185.250000 | 43.333333 | 225.583333 | 22.916667 | 3.666667 | 30.833333 | 60.333333 | 16.000000 | ... | 15.000000 | 19.500000 | 16.416667 | 6.916667 | 36.333333 | 14.583333 | 6.833333 | 68.500000 | 139.916667 | 0.000000 |
2019-01-01 01:00:00 | 72.916667 | 13.833333 | 323.916667 | 127.333333 | 231.250000 | 103.916667 | 17.083333 | 37.916667 | 72.750000 | 101.083333 | ... | 43.833333 | 65.833333 | 27.333333 | 21.916667 | 40.583333 | 96.000000 | 30.166667 | 70.333333 | 168.583333 | 3.833333 |
2019-01-01 02:00:00 | 78.833333 | 5.750000 | 427.666667 | 158.166667 | 234.833333 | 165.416667 | 29.916667 | 46.583333 | 83.750000 | 132.000000 | ... | 57.500000 | 110.250000 | 39.583333 | 59.583333 | 42.750000 | 154.666667 | 38.166667 | 72.416667 | 197.666667 | 8.083333 |
2019-01-01 03:00:00 | 79.833333 | 10.000000 | 487.250000 | 212.166667 | 236.166667 | 164.000000 | 44.416667 | 52.000000 | 87.916667 | 165.833333 | ... | 68.750000 | 133.583333 | 44.500000 | 83.500000 | 46.750000 | 184.416667 | 36.916667 | 73.750000 | 211.166667 | 10.000000 |
2019-01-01 04:00:00 | 81.000000 | 12.000000 | 520.166667 | 272.416667 | 239.416667 | 172.083333 | 53.750000 | 53.833333 | 91.250000 | 187.000000 | ... | 75.416667 | 144.583333 | 45.250000 | 99.333333 | 48.083333 | 201.250000 | 44.166667 | 73.083333 | 225.916667 | 10.916667 |
2019-01-01 05:00:00 | 81.166667 | 12.000000 | 533.500000 | 309.500000 | 242.083333 | 179.833333 | 58.750000 | 54.666667 | 91.416667 | 198.333333 | ... | 78.416667 | 172.500000 | 45.833333 | 114.416667 | 48.916667 | 208.000000 | 49.916667 | 73.250000 | 231.583333 | 12.583333 |
2019-01-01 06:00:00 | 81.666667 | 12.000000 | 544.500000 | 354.666667 | 227.583333 | 180.750000 | 58.500000 | 54.833333 | 91.000000 | 199.500000 | ... | 80.583333 | 190.416667 | 46.000000 | 122.250000 | 50.000000 | 156.416667 | 60.083333 | 73.750000 | 234.000000 | 11.416667 |
2019-01-01 07:00:00 | 81.000000 | 10.666667 | 548.166667 | 370.833333 | 225.750000 | 181.666667 | 59.583333 | 55.000000 | 90.916667 | 199.750000 | ... | 82.083333 | 197.750000 | 45.750000 | 123.166667 | 50.000000 | 158.916667 | 62.000000 | 72.916667 | 233.000000 | 8.000000 |
2019-01-01 08:00:00 | 80.833333 | 10.000000 | 548.916667 | 374.416667 | 223.500000 | 132.333333 | 60.583333 | 54.416667 | 90.833333 | 196.583333 | ... | 83.416667 | 206.583333 | 47.000000 | 120.333333 | 50.000000 | 159.000000 | 62.666667 | 72.833333 | 233.666667 | 9.583333 |
2019-01-01 09:00:00 | 80.166667 | 10.000000 | 547.416667 | 374.166667 | 215.583333 | 63.750000 | 61.583333 | 53.666667 | 90.583333 | 199.833333 | ... | 83.750000 | 209.000000 | 48.000000 | 112.833333 | 50.416667 | 159.416667 | 62.750000 | 73.000000 | 233.250000 | 10.333333 |
2019-01-01 10:00:00 | 81.000000 | 10.000000 | 543.000000 | 352.250000 | 207.916667 | 60.250000 | 65.166667 | 54.833333 | 90.833333 | 200.916667 | ... | 85.166667 | 199.083333 | 50.083333 | 107.750000 | 50.000000 | 161.083333 | 55.916667 | 72.416667 | 231.916667 | 12.000000 |
2019-01-01 11:00:00 | 81.500000 | 12.916667 | 536.416667 | 280.916667 | 191.833333 | 48.833333 | 61.750000 | 55.000000 | 89.916667 | 202.166667 | ... | 83.416667 | 177.916667 | 51.500000 | 100.250000 | 50.000000 | 157.166667 | 51.000000 | 73.000000 | 230.750000 | 9.000000 |
2019-01-01 12:00:00 | 83.000000 | 13.000000 | 529.166667 | 169.500000 | 167.916667 | 138.166667 | 58.750000 | 54.833333 | 89.333333 | 198.500000 | ... | 80.333333 | 130.333333 | 53.000000 | 63.333333 | 47.916667 | 154.333333 | 43.750000 | 73.000000 | 229.250000 | 9.250000 |
2019-01-01 13:00:00 | 83.500000 | 12.416667 | 521.333333 | 67.750000 | 163.166667 | 129.416667 | 51.583333 | 55.666667 | 89.250000 | 200.500000 | ... | 75.750000 | 52.833333 | 53.500000 | 28.083333 | 46.583333 | 151.416667 | 32.416667 | 74.166667 | 225.750000 | 5.500000 |
2019-01-01 14:00:00 | 84.000000 | 11.750000 | 514.916667 | 10.916667 | 149.250000 | 107.416667 | 46.250000 | 55.000000 | 90.750000 | 199.833333 | ... | 70.083333 | 3.083333 | 53.666667 | 8.666667 | 44.166667 | 153.000000 | 26.666667 | 75.000000 | 224.000000 | 4.750000 |
2019-01-01 15:00:00 | 83.666667 | 10.666667 | 502.750000 | 7.166667 | 130.250000 | 69.166667 | 40.416667 | 52.583333 | 91.416667 | 197.750000 | ... | 72.750000 | 1.666667 | 53.833333 | 1.250000 | 44.500000 | 152.166667 | 28.916667 | 75.000000 | 222.166667 | 4.500000 |
2019-01-01 16:00:00 | 84.750000 | 11.583333 | 498.333333 | 4.333333 | 136.333333 | 65.250000 | 51.166667 | 53.916667 | 87.000000 | 196.166667 | ... | 80.250000 | 3.000000 | 48.583333 | 2.666667 | 47.750000 | 146.500000 | 43.000000 | 74.000000 | 225.750000 | 8.833333 |
2019-01-01 17:00:00 | 84.833333 | 11.833333 | 508.250000 | 10.666667 | 156.750000 | 88.583333 | 45.916667 | 56.833333 | 84.500000 | 196.583333 | ... | 82.916667 | 6.000000 | 46.833333 | 3.250000 | 50.500000 | 148.250000 | 42.000000 | 74.000000 | 227.833333 | 11.666667 |
2019-01-01 18:00:00 | 85.500000 | 12.833333 | 523.750000 | 34.416667 | 174.500000 | 134.083333 | 38.583333 | 58.416667 | 82.500000 | 204.666667 | ... | 85.833333 | 34.166667 | 47.333333 | 16.916667 | 53.083333 | 149.000000 | 59.166667 | 72.083333 | 229.000000 | 13.583333 |
2019-01-01 19:00:00 | 86.166667 | 13.500000 | 530.833333 | 89.750000 | 198.083333 | 155.416667 | 47.750000 | 59.000000 | 84.916667 | 208.833333 | ... | 85.833333 | 77.500000 | 50.166667 | 48.333333 | 52.166667 | 159.666667 | 66.666667 | 73.916667 | 231.916667 | 10.416667 |
2019-01-01 20:00:00 | 87.000000 | 14.000000 | 536.916667 | 135.083333 | 209.416667 | 129.500000 | 33.916667 | 58.583333 | 90.166667 | 216.750000 | ... | 81.750000 | 106.083333 | 50.666667 | 56.583333 | 52.833333 | 163.333333 | 75.000000 | 74.000000 | 231.166667 | 12.250000 |
2019-01-01 21:00:00 | 86.333333 | 6.250000 | 541.833333 | 157.250000 | 218.000000 | 54.833333 | 39.583333 | 59.000000 | 93.000000 | 68.250000 | ... | 76.416667 | 135.416667 | 51.166667 | 72.000000 | 54.000000 | 164.833333 | 77.166667 | 73.750000 | 233.166667 | 14.666667 |
2019-01-01 22:00:00 | 83.000000 | 7.000000 | 546.333333 | 161.833333 | 228.500000 | 60.666667 | 41.083333 | 58.916667 | 93.166667 | 66.833333 | ... | 78.750000 | 167.250000 | 53.000000 | 88.833333 | 54.000000 | 167.250000 | 77.916667 | 74.000000 | 234.833333 | 12.000000 |
2019-01-01 23:00:00 | 83.000000 | 6.083333 | 548.416667 | 186.833333 | 228.750000 | 64.583333 | 42.916667 | 58.250000 | 91.166667 | 68.500000 | ... | 82.916667 | 186.750000 | 54.416667 | 97.750000 | 54.000000 | 169.500000 | 81.750000 | 74.000000 | 234.000000 | 13.083333 |
2019-01-02 00:00:00 | 82.750000 | 6.000000 | 549.333333 | 236.583333 | 231.916667 | 64.500000 | 43.000000 | 58.916667 | 90.833333 | 72.750000 | ... | 81.583333 | 195.416667 | 55.000000 | 88.333333 | 54.000000 | 170.833333 | 73.000000 | 73.916667 | 235.583333 | 16.000000 |
2019-01-02 01:00:00 | 83.000000 | 6.000000 | 555.000000 | 305.250000 | 236.500000 | 65.000000 | 48.166667 | 59.000000 | 91.166667 | 70.916667 | ... | 43.000000 | 189.333333 | 55.333333 | 81.000000 | 54.083333 | 164.833333 | 64.250000 | 74.000000 | 237.333333 | 15.583333 |
2019-01-02 02:00:00 | 83.000000 | 6.000000 | 554.916667 | 345.833333 | 239.250000 | 65.000000 | 50.333333 | 59.000000 | 92.666667 | 70.000000 | ... | 43.000000 | 173.416667 | 55.583333 | 81.000000 | 55.000000 | 149.333333 | 65.416667 | 40.583333 | 235.500000 | 14.916667 |
2019-01-02 03:00:00 | 82.750000 | 5.750000 | 554.666667 | 367.666667 | 240.083333 | 65.833333 | 50.750000 | 58.833333 | 93.000000 | 69.083333 | ... | 44.000000 | 173.000000 | 56.000000 | 81.500000 | 54.833333 | 148.666667 | 67.000000 | 24.000000 | 235.416667 | 15.000000 |
2019-01-02 04:00:00 | 83.000000 | 5.000000 | 553.750000 | 381.916667 | 241.000000 | 67.000000 | 51.000000 | 59.000000 | 93.000000 | 69.083333 | ... | 44.000000 | 172.666667 | 56.000000 | 82.000000 | 54.083333 | 171.916667 | 67.250000 | 23.416667 | 234.666667 | 15.000000 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2019-01-30 18:00:00 | 38.333333 | 0.000000 | 229.166667 | 207.416667 | 177.416667 | 19.916667 | 3.833333 | 37.666667 | 62.833333 | 70.750000 | ... | 23.916667 | 87.083333 | 36.916667 | 59.583333 | 50.250000 | 69.166667 | 35.083333 | 21.000000 | 174.166667 | 5.666667 |
2019-01-30 19:00:00 | 40.916667 | 0.000000 | 359.666667 | 268.500000 | 212.666667 | 15.333333 | 7.500000 | 42.166667 | 74.416667 | 69.750000 | ... | 16.000000 | 73.583333 | 46.166667 | 59.916667 | 61.666667 | 103.833333 | 52.250000 | 21.500000 | 233.750000 | 6.166667 |
2019-01-30 20:00:00 | 43.666667 | 0.000000 | 457.750000 | 287.916667 | 238.000000 | 29.250000 | 12.666667 | 41.083333 | 78.000000 | 76.416667 | ... | 7.416667 | 63.166667 | 50.000000 | 58.833333 | 69.416667 | 130.666667 | 55.416667 | 22.000000 | 275.166667 | 8.000000 |
2019-01-30 21:00:00 | 18.454545 | 0.000000 | 512.545455 | 290.090909 | 243.272727 | 43.545455 | 15.636364 | 41.818182 | 79.545455 | 79.272727 | ... | 7.909091 | 70.272727 | 54.454545 | 66.272727 | 73.909091 | 138.636364 | 56.727273 | 24.909091 | 292.909091 | 9.454545 |
2019-01-30 22:00:00 | 13.916667 | 0.000000 | 524.416667 | 298.416667 | 249.250000 | 51.416667 | 16.083333 | 43.750000 | 80.250000 | 81.583333 | ... | 20.333333 | 87.666667 | 63.333333 | 79.000000 | 79.666667 | 140.750000 | 62.583333 | 26.000000 | 308.750000 | 14.000000 |
2019-01-30 23:00:00 | 15.000000 | 0.000000 | 527.833333 | 310.750000 | 252.750000 | 59.250000 | 19.583333 | 45.000000 | 79.666667 | 84.000000 | ... | 32.833333 | 112.750000 | 63.916667 | 81.166667 | 80.833333 | 142.833333 | 69.500000 | 26.000000 | 314.833333 | 21.500000 |
2019-01-31 00:00:00 | 14.750000 | 0.000000 | 548.416667 | 323.416667 | 255.166667 | 61.666667 | 20.000000 | 46.000000 | 79.833333 | 73.500000 | ... | 36.916667 | 122.583333 | 64.000000 | 83.916667 | 80.000000 | 143.000000 | 71.750000 | 26.000000 | 276.833333 | 26.416667 |
2019-01-31 01:00:00 | 15.000000 | 0.000000 | 555.000000 | 332.666667 | 250.583333 | 61.500000 | 17.333333 | 46.000000 | 79.000000 | 60.750000 | ... | 40.000000 | 125.250000 | 63.916667 | 85.666667 | 80.000000 | 143.000000 | 71.750000 | 26.000000 | 232.583333 | 26.833333 |
2019-01-31 02:00:00 | 15.000000 | 0.000000 | 554.833333 | 342.916667 | 247.916667 | 62.000000 | 17.000000 | 42.583333 | 78.833333 | 60.500000 | ... | 40.000000 | 127.000000 | 63.583333 | 86.000000 | 76.583333 | 143.916667 | 71.916667 | 25.916667 | 231.250000 | 27.000000 |
2019-01-31 03:00:00 | 14.666667 | 0.000000 | 554.833333 | 352.583333 | 247.416667 | 62.000000 | 16.833333 | 42.000000 | 79.000000 | 60.083333 | ... | 40.000000 | 127.000000 | 64.000000 | 86.000000 | 71.000000 | 144.583333 | 72.000000 | 25.916667 | 231.333333 | 26.916667 |
2019-01-31 04:00:00 | 14.833333 | 0.000000 | 554.000000 | 352.750000 | 247.000000 | 62.000000 | 17.000000 | 42.000000 | 79.000000 | 59.166667 | ... | 40.000000 | 127.000000 | 63.916667 | 86.000000 | 70.000000 | 148.500000 | 48.166667 | 24.916667 | 230.750000 | 27.000000 |
2019-01-31 05:00:00 | 14.000000 | 0.000000 | 553.916667 | 357.833333 | 247.750000 | 61.250000 | 15.583333 | 41.833333 | 78.750000 | 60.750000 | ... | 39.583333 | 126.166667 | 63.750000 | 86.000000 | 67.500000 | 147.750000 | 44.583333 | 24.833333 | 230.000000 | 27.416667 |
2019-01-31 06:00:00 | 12.916667 | 0.000000 | 551.416667 | 353.500000 | 237.500000 | 61.333333 | 12.916667 | 41.083333 | 78.083333 | 60.083333 | ... | 40.833333 | 121.916667 | 61.416667 | 83.166667 | 63.166667 | 146.000000 | 42.833333 | 25.000000 | 223.666667 | 27.333333 |
2019-01-31 07:00:00 | 9.166667 | 0.000000 | 535.833333 | 241.583333 | 211.000000 | 59.500000 | 8.416667 | 38.833333 | 70.250000 | 57.250000 | ... | 37.500000 | 115.333333 | 46.833333 | 67.416667 | 53.833333 | 135.583333 | 34.333333 | 24.416667 | 180.500000 | 19.750000 |
2019-01-31 08:00:00 | 5.000000 | 0.000000 | 449.250000 | 138.750000 | 156.000000 | 52.583333 | 3.083333 | 25.000000 | 57.166667 | 46.583333 | ... | 24.166667 | 80.500000 | 21.083333 | 34.333333 | 37.416667 | 99.250000 | 6.916667 | 23.333333 | 94.750000 | 4.916667 |
2019-01-31 09:00:00 | 0.750000 | 0.000000 | 302.416667 | 54.916667 | 86.000000 | 44.500000 | 3.333333 | 24.666667 | 49.000000 | 34.916667 | ... | 6.083333 | 65.833333 | 0.750000 | 3.666667 | 25.416667 | 30.416667 | 0.000000 | 23.333333 | 14.500000 | 0.750000 |
2019-01-31 10:00:00 | 1.666667 | 0.000000 | 194.666667 | 0.000000 | 42.000000 | 28.000000 | 5.166667 | 14.083333 | 50.083333 | 22.750000 | ... | 0.500000 | 54.916667 | 525.916667 | 1.083333 | 23.416667 | 3.333333 | 0.083333 | 19.083333 | 2.416667 | 0.333333 |
2019-01-31 11:00:00 | 5.000000 | 0.000000 | 186.333333 | 0.000000 | 24.666667 | 19.333333 | 2.500000 | 8.416667 | 50.416667 | 15.583333 | ... | 0.916667 | 45.416667 | 75.750000 | 0.416667 | 22.166667 | 1.250000 | 0.250000 | 16.083333 | 4.250000 | 0.833333 |
2019-01-31 12:00:00 | 5.166667 | 0.000000 | 198.750000 | 0.000000 | 68.083333 | 10.166667 | 2.750000 | 15.333333 | 68.500000 | 14.666667 | ... | 0.250000 | 24.666667 | 1.166667 | 0.083333 | 14.666667 | 7.583333 | 0.750000 | 16.666667 | 9.166667 | 0.333333 |
2019-01-31 13:00:00 | 3.750000 | 0.000000 | 224.416667 | 0.000000 | 40.166667 | 9.083333 | 0.416667 | 16.916667 | 63.666667 | 27.083333 | ... | 0.333333 | 16.166667 | 0.000000 | 3.500000 | 13.583333 | 0.166667 | 0.000000 | 19.416667 | 30.750000 | 0.166667 |
2019-01-31 14:00:00 | 5.500000 | 0.000000 | 189.916667 | 0.000000 | 10.500000 | 8.416667 | 0.333333 | 14.833333 | 56.250000 | 23.250000 | ... | 1.916667 | 25.750000 | 4.500000 | 0.416667 | 15.500000 | 0.833333 | 0.000000 | 21.000000 | 29.000000 | 1.583333 |
2019-01-31 15:00:00 | 8.750000 | 0.000000 | 128.500000 | 0.000000 | 18.000000 | 6.916667 | 0.666667 | 14.833333 | 54.333333 | 24.333333 | ... | 7.416667 | 27.750000 | 2.916667 | 2.250000 | 16.333333 | 1.583333 | 0.333333 | 20.500000 | 30.333333 | 3.833333 |
2019-01-31 16:00:00 | 16.166667 | 0.000000 | 147.833333 | 0.000000 | 58.916667 | 16.500000 | 2.000000 | 11.750000 | 59.166667 | 32.000000 | ... | 12.500000 | 47.250000 | 9.916667 | 15.833333 | 21.166667 | 5.000000 | 0.916667 | 22.916667 | 64.166667 | 4.166667 |
2019-01-31 17:00:00 | 10.583333 | 0.000000 | 162.666667 | 39.333333 | 133.916667 | 25.750000 | 6.583333 | 30.583333 | 58.916667 | 46.000000 | ... | 25.666667 | 63.500000 | 28.416667 | 31.666667 | 30.583333 | 13.083333 | 2.583333 | 22.750000 | 105.166667 | 5.166667 |
2019-01-31 18:00:00 | 8.500000 | 0.000000 | 226.333333 | 83.333333 | 182.333333 | 8.750000 | 12.666667 | 43.583333 | 71.000000 | 56.083333 | ... | 23.500000 | 76.833333 | 40.500000 | 39.250000 | 37.916667 | 54.500000 | 8.833333 | 23.166667 | 182.500000 | 5.250000 |
2019-01-31 19:00:00 | 16.250000 | 0.000000 | 350.166667 | 65.416667 | 208.750000 | 12.750000 | 16.000000 | 44.500000 | 83.666667 | 55.333333 | ... | 14.250000 | 83.250000 | 50.500000 | 33.500000 | 50.166667 | 89.166667 | 17.000000 | 25.750000 | 220.333333 | 8.666667 |
2019-01-31 20:00:00 | 20.583333 | 0.000000 | 463.583333 | 14.250000 | 229.416667 | 16.750000 | 24.416667 | 40.916667 | 86.583333 | 58.250000 | ... | 6.416667 | 43.500000 | 52.333333 | 17.916667 | 64.833333 | 111.166667 | 19.500000 | 27.000000 | 257.083333 | 8.416667 |
2019-01-31 21:00:00 | 17.833333 | 0.000000 | 523.416667 | 14.500000 | 234.833333 | 48.833333 | 29.000000 | 41.833333 | 89.166667 | 63.416667 | ... | 10.583333 | 51.583333 | 54.666667 | 33.250000 | 68.583333 | 124.083333 | 25.583333 | 27.000000 | 288.833333 | 9.666667 |
2019-01-31 22:00:00 | 7.083333 | 0.000000 | 538.500000 | 29.333333 | 246.750000 | 53.416667 | 29.333333 | 41.500000 | 90.416667 | 65.750000 | ... | 25.416667 | 78.833333 | 54.416667 | 52.000000 | 71.166667 | 129.333333 | 29.333333 | 27.000000 | 311.583333 | 15.000000 |
2019-01-31 23:00:00 | 9.454545 | 0.000000 | 541.090909 | 137.636364 | 251.454545 | 49.363636 | 31.545455 | 41.181818 | 90.181818 | 67.545455 | ... | 37.454545 | 126.454545 | 57.727273 | 70.272727 | 70.727273 | 138.090909 | 35.363636 | 27.000000 | 321.454545 | 22.545455 |
745 rows × 32 columns
pourcentage_libre = df.apply(lambda x: x / x.max())
pourcentage_libre.plot(legend=False)
<matplotlib.axes._subplots.AxesSubplot at 0x7fda12afd160>
On regarde si a un moment on a plus du tout de places libres.
total_places_libres = df.sum(axis=1)
total_places_libres.describe()
plt.figure()
total_places_libres.plot()
plt.show()
Sont-ils tous quasiment plein à 8h du mat et quasiment vide la nuit ?
coeff_variation = df.std() / df.mean()
coeff_variation.dropna().sort_values()
ENGELIN 0.162077 GRIMALDI FORUM 0.283716 MOULINS 0.378335 LOUIS II 0.408160 LARVOTTO 0.429566 PECHEURS 0.430500 CHPG 2 (BAS) 0.444560 C.C.F. 0.447256 JARDIN EXOTIQUE 0.474097 ST CHARLES 0.547712 ECOLES RDC 0.556609 QUAI ANTOINE 1ER 0.607473 OSTENDE 0.641370 CASINO 0.655930 CONDAMINE 0.659389 TESTIMONIO 0.662062 GARE 0.673498 SQUARE GASTAUD 0.673546 LA COLLE 0.692405 ROQUEVILLE 0.701028 ST LAURENT 0.703451 LA DIGUE 0.758203 PLACE D ARMES 0.759196 ST NICOLAS 0.761251 PORT 0.772705 COSTA 0.780515 ANNONCIADE 0.883506 ST ANTOINE 0.982644 STADE 0.984279 PAPALINS 1.023247 HELIPORT 1.158611 BOSIO 1.555401 dtype: float64
#pourcentage_libre[["ENGELIN", "PAPALINS", "STADE", "BOSIO"]].plot()
pourcentage_libre[["STADE"]].plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7fda127dd080>
import calmap
calmap.calendarplot(df.STADE)
plt.show()
numpy
de base